Understanding Roadblocks in Virtual Network I/O: A Comprehensive Analysis of CPU Cache Usage

D. Takeya[†] | <u>R. Kawashima</u>[†] Y. Nakayama[‡] T. Hayashi[‡]

Contact: *R. Kawashima* <kawa1983@ieee.org>

[†]Nagoya Institute of Technology [‡]BOSCO Technologies, Inc. H. Matsuo

POINTS

Identify the performance bottleneck

Focus on CPU L1 cache usage

Past focus: packet copy

Show a potential to achieve 100+ Mpps

6x higher than DPDK/vhost-user

2. CACHE & VIRTUAL NETWORK I/O Why CPU cache?, CPU cache usage

3. OUR STUDY Goals, Approach, Evaluation design

4. RESULTS Environment, Throughput, Analysis

5. CONCLUSION Conclusion and future work

CNF (Cloud-native Network Function)

Container-formed network functions

Virtual Network I/O Performance critical part of CNFs Container MBuf Packet Application-dependent MBuf Packet NFV-node Packet I/O Logic Container Driver DPDK CNF Тх Inter-Process Communication vNet I/O ♦ Vhost-user (de-facto) ◆ Bottleneck (15-20 Mpps) MBuf Packet virtual network I/O Packet I/O Logic Driver Virtual Switch DPDK Host CPU Memory Port NIC Port NIC Port Port

Why does virtual network I/O halve throughput?

Zero-copy

Past studies focused on packet copy

- Packet (memory) copy is removed
 - Various implementations
 - NetVM (2014), OpenNetVM (2016)
 - ZCopy-Vhost (2017)
 - IOVTee (2018)
- Marginal effect on performance

Throughput (64B)

with packet copy

≒15 Gbps

gain

20-40%

Isn't packet copy the true bottleneck? 5

AGENDA

2. CACHE & VIRTUAL NETWORK I/O Why CPU cache?, CPU cache usage

3. OUR STUDY Goals, Approach, Evaluation design

> 4. RESULTS Environment, Throughput, Analysis

5. CONCLUSION Conclusion and future work

Why CPU Cache?

Every little bit adds up

- Cache is always accessed
 - Virtual Network I/O
 Due to packet copy? or queue handling?
- Penalty of cache misses

Performance cost

Cache miss \Rightarrow Packet copy (64B)

Why does virtual network I/O need frequent cache accesses?

CPU Cache Usage (in Virtual Network I/O)

Three-body problem in cache/memory

AGENDA

2. CACHE & VIRTUAL NETWORK I/O Why CPU cache?, CPU cache usage

4. RESULTS Environment, Throughput, Analysis

5. CONCLUSION Conclusion and future work

Understand the true bottleneck in virtual network I/O

Unveil the effect of cache usage on performance

Assess a possibility of fair speed-up

APPROACH

Exhaustive experiments and analyses

Evaluation Design

Inheritance and Multiplexing

EIVU (Essential Implementation of Vhost-User)

Easy-to-customize evaluation framework

13

Equivalent design/implementation and performance

AGENDA

2. CACHE & VIRTUAL NETWORK I/O Why CPU cache?, CPU cache usage

3. OUR STUDY Goals, Approach, Evaluation design

5. CONCLUSION Conclusion and future work

Contents & Environment

To what extent does cache usage affect?

Throughput vs. L1 Cache Usage

What was the performance bottleneck?

Analysis

Look deep inside the best-case item!

Why is factor (c) so influential? 17

Performance Bottleneck The buffer header causes implicit conflicts H/W prefetching С С С NFV node NF 3 Packet Packet Packet Container Invalidation CNF Packet copies (memory accesses) Rx 1 Packet Packet Packet vSwitch С С C. C Simple L2 forwarding Host Port NIC Port Future challenge Re-design of packet buffer structure

AGENDA

2. CACHE & VIRTUAL NETWORK I/O Why CPU cache?, CPU cache usage

3. OUR STUDY Goals, Approach, Evaluation design

4. RESULTS Environment, Throughput, Analysis

5. CONCLUSION Conclusion and future work

Conclusion and Future Work

Theme: Performance issue of virtual network I/O

Then	Now
Throughput: 15-20 Mpps	Throughput: 100+ Mpps (potential)
Focus: Packet copy Not the true bottleneck	Focus: CPU cache usage
Approach: Zero-copy	Approach: Re-design (structure)

♦ Over 99.99% of L1 hit ratio is necessary

♦ Implicit cache conflicts need to be avoided

Challenge: Re-design of packet buffer structure

RESOURCES

EIVU platform

https://github.com/sdnnitech/EIVU

Evaluation design

https://sdnnitech.github.io/EIVU/eval/evaluation.html

Result

https://sdnnitech.github.io/EIVU/eval/results.html

Mathematical analysis

https://github.com/sdnnitech/CESim

[Appendix] Results on the Other Servers

[Appendix] Impact of Cache Invalidations

Major cause of L1 cache misses is invalidation!

[Appendix] Effects of L2 and L3 Caches

L2/L3 cache usages have little impact on throughput!

[Appendix] Tipping Points

Why does the tipping points appear?

Experiment

- pp. 15-18
- Acquired values are useful
- Real environment is complex to dig in

Modeling

- Essential nature of packet forwarding
- Experimental results are feedbacked

Simulation

- Throughput vs. Cache usage
- Can reproduce the experimental results?

[Appendix] Modeling (Parameters)

Experiment

Best-case item

> Throughput

Cache usage

No. cache accesses (per packet)

Machine spec.

- CPU clock
- Access latency

Constants

- Input parameters
- Pure proc. ratio (α)
- Acceleration factor (β)

Variable

Cache hit ratio (L1)

Modeling

[Appendix] Modeling (Construction)

Simple model (Non-parallelized)

Calculate throughput!

Modified model (Parallelized)

Tipping point doesn't appear on Simple model (see next page)

[Appendix] Simulation

L1 cache miss would cancel parallelization effect!