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 Problem: Roadblocks of packet I/O parallelization

2Summary

 Proposal: Static role assignment
 Based on careful analyses of packet receiving mechanism
 Independent from specific H/W features

Contribution

Remaining Problem

Flatten CPU cycle consumptions
→ Minimize S/W-side overhead

Throughput is not improved 
due to H/W-side limitation

Rx 
queue Worker 

thread

Worker 
thread

 Sharing a single Rx queue
Trivial arbitration cost

Increased CPU cycles due to
unexplicit H/W-level contention

H/W-level
contention
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>10 Gbps is challenging to reach

4Requirement: Boost Performance
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Forwarding performance of 
64-byte packets†

Theoretical (10 GbE)

Theoretical (40 GbE)

DPDK: Data Plane Development Kit
OVS: Open vSwitch

(1 flow / 1 thread)

† Evaluation of Forwarding Efficiency in NFV-nodes toward 
Predictable Service Chain Performance.
R. Kawashima et al.
IEEE Transactions on Network and Service Management, 2017

 >800 Gbps Ethernet comes
 Limited per-core performance

100 Gbps with 64-byte packets

Processing Time: 5.12 nsec/packet
CPU cycles: ≦17 cycle/packet

I/O Parallelization is needed

†† Make the most out of last level cache in intel processors.
A. Farshin et al.
Proceedings of the Fourteenth EuroSys Conference, 2019

††



Hardware accelerators are not silver bullets
 e.g. SmartNIC with FPGA

5Requirement: Keep Flexibility

Pros.

Cons.

Optimize specific workloads

 Inflexible deployment
 Long time to deploy
 Difficult to share H/W resources

Costly development
 Vendor-specific tools, procedures

Network flexibility should be kept by software
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7Packet Processing with DPDK

CPU Core

TxProcessRx

 Concept
 1 core ⇔ 1 thread
 Packet batching

 For performance improvement
 Batch many packets
 Reduce CPU cycles

Rx
queue

Tx
queue

processing_loop()
{

N = 32;  /* Default */
packets[N];
rx_queue;
tx_queue;

while (true)
{

rx_burst(rx_queue, packets);
process(packets);
tx_burst(tx_queue, packets);

}
}

Packet processing loop



8Flow-level Parallelization

Rx queue
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Flow 2
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Flow 0

Flow 0

Flow 0

Flow 0

Hash()
Rx queue ID5-tuple

Multi-queue NIC

C0

 Per-flow performance is not improved
 Not work with a single-flow traffic

Finer-grained parallelization than flows is needed

 RSS: Receive Side Scaling
 Distribute packets to cores with the hash value of 5-tuple†

† Src IP / Dst IP / Src port / Dst port / Protocol number



Multiple packet processing models†

9Packet-level Parallelization

Worker
thread
Worker
thread
Worker
thread

Parent
thread

Parent/Worker Model

I/O is a bottleneck

Receiving process is not parallelized

† Designing Virtual Network Functions for 100 GbE
Network Using Multicore Processors.
P. Li et al.
2017 ACM/IEEE Symposium on Architectures for 
Networking and Communications Systems (ANCS)

I/O must be included in
parallelization

Software-based
approach

Parent decides a Worker
to send packets

Rx 
queue



Added arbitration to a receive queue†

10Simple I/O Parallelization

Considering H/W behaviors is needed for I/O parallelization

Rx 
queue

CPU Core 0
TxProcess

CPU Core 1
TxProcess

CPU Core 2
TxProcess

Rx

Rx

Rx

Access
Arbitration

DMA

† Datapath Parallelization for Improving the I/O Performance on 
NFV Nodes (in Japanese).
M. Asada, R. Kawashima, H. Nakayama, T. Hayashi, and H. Matsuo
IEICE Technical Report (NS2019-37), 2019
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 Fast Datapath by I/O Parallelization
 Utilize performance of multi-core processors
 Utilize DPDK’s packet batching

 Independent from Specific Hardware Features
 Enable familiar resources for flexibility

 Development tools
 Programming languages
 OS, API
 Servers

 Rx-Mechanism Awareness
 Consider the interaction with H/W

12Requirements



Mbuf
(provided by DPDK)

 Two aspects in a receive queue
 H/W interface: Interactions with a NIC
 S/W ring: Software-friendly data structure of packets

13H/W Contentions in A Receive Queue

Rx 
queue

S/W ringH/W interface

Raw Ethernet frame AppNIC

DMA Rx function call

Pointer array of raw packets Pointer array of Mbuf

Parallelization without 
contentions

Parallelization causes
H/W-level contentions



Rx queue

14Proposal: Static Role Assignment

CPU Core 1: Worker
TxProcess

CPU Core 2: Worker
TxProcess

Rx

Rx

CPU Core 0:
Parent

Rx

S/W ring
H/W interface

H/W 
Access

Packet Acquisition

 Role of CPU cores (threads)
 Parent: H/W Access ― Executed by a single thread

to avoid H/W contentions
 Worker: Packet Acquisition ― Pure S/W operations

which can be parallelized

 Assumed applications
 Stateless per-packet processing

(e.g. routing, address translation, encapsulation)

NIC
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15Comparation of Parallelization Patterns
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17Evaluation Environment

DuT Server Test Server
CPU Intel Core i9-7940X @3.10GHz

14 cores (HT disabled)
Intel Core i7-7900X @3.30GHz
10 cores (HT disabled)

Mem 32 GB DDR4 64 GB DDR4
NIC Mellanox Technologies ConnectX-5 Ex 100 GbE Dual-Port
OS CentOS 7.7 CentOS 7.7
DPDK v19.11 v19.05
TRex ― v2.56

DuT Server

NIC NIC

Test Server

NIC NIC

Traffic 
Generator

TRex

64-byte UDP traffic
100 GbE

DPDK
VNF (L2FWD)

Implemented

Only 
Forwarding



18Consumed CPU Cycles per Packet
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19Number of Processed Packets
1 Core

4 Cores

Parent thread in Proposal

(max. 1024)(max. 32)

(max. 32) CDF: Cumulative distribution function

Lower Load

S/W is not a bottleneck



20Throughput
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22Packet Drop inside H/W

Rx queue
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H/W-side limitation
has to be removed

Input traffic equals 
to wire-rate

Successfully 
processed rate

Drop caused by 
S/W-side

Drop caused by 
H/W-side



 Roadblocks of I/O parallelization in VNFs
 Unexplicit H/W-level contentions

 Proposal: Static role assignment
 Based on the analysis of packet reception mechanism
 Removed most of overheads in S/W-side
 H/W-side limitation obstructs the improvement of 

throughput
 Future work

 Further investigation and optimization for linear scaling

23Conclusion


