
Roadblocks of I/O Parallelization:
Removing H/W Contentions by
Static Role Assignment in VNFs

Masahiro Asada†1 Ryota Kawashima†1 Hiroki Nakayama†2

Tsunemasa Hayashi†2 Hiroshi Matsuo†1

1

†1 Nagoya Institute of Technology
†2 BOSCO Technologies Inc.

IEEE CloudNet 2020
November 9, 2020

 Problem: Roadblocks of packet I/O parallelization

2Summary

 Proposal: Static role assignment
 Based on careful analyses of packet receiving mechanism
 Independent from specific H/W features

Contribution

Remaining Problem

Flatten CPU cycle consumptions
→ Minimize S/W-side overhead

Throughput is not improved
due to H/W-side limitation

Rx
queue Worker

thread

Worker
thread

 Sharing a single Rx queue
Trivial arbitration cost

Increased CPU cycles due to
unexplicit H/W-level contention

H/W-level
contention

Background
 Parallelization Schemes
 Proposal
 Evaluation
Discussion, Conclusion

3Contents

>10 Gbps is challenging to reach

4Requirement: Boost Performance

0

10

20

30

40

50

60

70

OVS-DPDK
(Bare-metal)

OVS-DPDK
(VM)

OVS
(Bare-metal)

Th
ro

ug
hp

ut
(M

pp
s)

Forwarding performance of
64-byte packets†

Theoretical (10 GbE)

Theoretical (40 GbE)

DPDK: Data Plane Development Kit
OVS: Open vSwitch

(1 flow / 1 thread)

† Evaluation of Forwarding Efficiency in NFV-nodes toward
Predictable Service Chain Performance.
R. Kawashima et al.
IEEE Transactions on Network and Service Management, 2017

 >800 Gbps Ethernet comes
 Limited per-core performance

100 Gbps with 64-byte packets

Processing Time: 5.12 nsec/packet
CPU cycles: ≦17 cycle/packet

I/O Parallelization is needed

†† Make the most out of last level cache in intel processors.
A. Farshin et al.
Proceedings of the Fourteenth EuroSys Conference, 2019

††

Hardware accelerators are not silver bullets
 e.g. SmartNIC with FPGA

5Requirement: Keep Flexibility

Pros.

Cons.

Optimize specific workloads

 Inflexible deployment
 Long time to deploy
 Difficult to share H/W resources

Costly development
 Vendor-specific tools, procedures

Network flexibility should be kept by software

 Background
 Parallelization Schemes

 Flow-level
 Packet-level
 I/O-level

 Proposal
 Evaluation
Discussion, Conclusion

6Contents

7Packet Processing with DPDK

CPU Core

TxProcessRx

 Concept
 1 core ⇔ 1 thread
 Packet batching

 For performance improvement
 Batch many packets
 Reduce CPU cycles

Rx
queue

Tx
queue

processing_loop()
{

N = 32; /* Default */
packets[N];
rx_queue;
tx_queue;

while (true)
{

rx_burst(rx_queue, packets);
process(packets);
tx_burst(tx_queue, packets);

}
}

Packet processing loop

8Flow-level Parallelization

Rx queue

0

1

2

3

CPU

C0

C1

C2

C3

Flow 0

Flow 0

Flow 1

Flow 2

Flow 3

Flow 1

Flow 2

Flow 3

Flow 0

Flow 0

Flow 0

Flow 0

Hash()
Rx queue ID5-tuple

Multi-queue NIC

C0

 Per-flow performance is not improved
 Not work with a single-flow traffic

Finer-grained parallelization than flows is needed

 RSS: Receive Side Scaling
 Distribute packets to cores with the hash value of 5-tuple†

† Src IP / Dst IP / Src port / Dst port / Protocol number

Multiple packet processing models†

9Packet-level Parallelization

Worker
thread
Worker
thread
Worker
thread

Parent
thread

Parent/Worker Model

I/O is a bottleneck

Receiving process is not parallelized

† Designing Virtual Network Functions for 100 GbE
Network Using Multicore Processors.
P. Li et al.
2017 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS)

I/O must be included in
parallelization

Software-based
approach

Parent decides a Worker
to send packets

Rx
queue

Added arbitration to a receive queue†

10Simple I/O Parallelization

Considering H/W behaviors is needed for I/O parallelization

Rx
queue

CPU Core 0
TxProcess

CPU Core 1
TxProcess

CPU Core 2
TxProcess

Rx

Rx

Rx

Access
Arbitration

DMA

† Datapath Parallelization for Improving the I/O Performance on
NFV Nodes (in Japanese).
M. Asada, R. Kawashima, H. Nakayama, T. Hayashi, and H. Matsuo
IEICE Technical Report (NS2019-37), 2019

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 3 4

Cy

cl
es

 p
er

 b
at

ch
 (=

 3
2

pa
ck

et
s)

Cores

Unexpected growth of
overheads

Be
tt

er

 Background
 Parallelization Schemes
 Proposal
 Evaluation
Discussion, Conclusion

11Contents

 Fast Datapath by I/O Parallelization
 Utilize performance of multi-core processors
 Utilize DPDK’s packet batching

 Independent from Specific Hardware Features
 Enable familiar resources for flexibility

 Development tools
 Programming languages
 OS, API
 Servers

 Rx-Mechanism Awareness
 Consider the interaction with H/W

12Requirements

Mbuf
(provided by DPDK)

 Two aspects in a receive queue
 H/W interface: Interactions with a NIC
 S/W ring: Software-friendly data structure of packets

13H/W Contentions in A Receive Queue

Rx
queue

S/W ringH/W interface

Raw Ethernet frame AppNIC

DMA Rx function call

Pointer array of raw packets Pointer array of Mbuf

Parallelization without
contentions

Parallelization causes
H/W-level contentions

Rx queue

14Proposal: Static Role Assignment

CPU Core 1: Worker
TxProcess

CPU Core 2: Worker
TxProcess

Rx

Rx

CPU Core 0:
Parent

Rx

S/W ring
H/W interface

H/W
Access

Packet Acquisition

 Role of CPU cores (threads)
 Parent: H/W Access ― Executed by a single thread

to avoid H/W contentions
 Worker: Packet Acquisition ― Pure S/W operations

which can be parallelized

 Assumed applications
 Stateless per-packet processing

(e.g. routing, address translation, encapsulation)

NIC

Core Role Division

✗Disabled ✓Enabled

Bu
ffe

r R
an

ge
 D

iv
is

io
n

✗
D

is
ab

le
d

Arbitration Arbitration and P/W

✓
En

ab
le

d

Only Range Division Proposal

15Comparation of Parallelization Patterns

Worker
Rx

Worker
Rx

Parent
Rx

Worker
Rx

Worker
Rx

Worker
Rx

Worker
Rx

Parent
Rx

Arbitration

Worker
Rx

Worker
Rx

Arbitration

 Background
 Parallelization Schemes
 Proposal
 Evaluation
Discussion, Conclusion

16Contents

17Evaluation Environment

DuT Server Test Server
CPU Intel Core i9-7940X @3.10GHz

14 cores (HT disabled)
Intel Core i7-7900X @3.30GHz
10 cores (HT disabled)

Mem 32 GB DDR4 64 GB DDR4
NIC Mellanox Technologies ConnectX-5 Ex 100 GbE Dual-Port
OS CentOS 7.7 CentOS 7.7
DPDK v19.11 v19.05
TRex ― v2.56

DuT Server

NIC NIC

Test Server

NIC NIC

Traffic
Generator

TRex

64-byte UDP traffic
100 GbE

DPDK
VNF (L2FWD)

Implemented

Only
Forwarding

18Consumed CPU Cycles per Packet

0

50

100

150

200

250

300

1 2 3 4

Cy

cl
es

Cores

Arbitration

1 2 4
Cores

Only Range
Division

1 2 4
Cores

Proposal

Entire
RX
Buffer
CAS
JoinBe

tt
er

Total cost

Reception

Operations to
independent areas

Arbitration

Buffer Range Division

Core Role Division

19Number of Processed Packets
1 Core

4 Cores

Parent thread in Proposal

(max. 1024)(max. 32)

(max. 32) CDF: Cumulative distribution function

Lower Load

S/W is not a bottleneck

20Throughput

1 2 4
Cores

Proposal

Core 3
Core 2
Core 1
Core 0

1 2 4
Cores

Only Range
Division

0

5

10

15

20

25

30

35

40

1 2 3 4

Rx
 T

hr
ou

gh
pu

t (
M

pp
s)

Cores

Arbitration

Be
tt

er
Performance

limitation

Overhead

S/W is not a bottleneck H/W-side limitation

 Background
 Parallelization Schemes
 Proposal
 Evaluation
Discussion, Conclusion

21Contents

22Packet Drop inside H/W

Rx queue

App
rx_packets_phy
148.22 Mpps

rx_discards_phy
111.41 Mpps rx_out_of_buffer

0.6568 Mpps

rx_q0packets
36.16 Mpps

H/W-side S/W-side

0
20
40
60
80

100
120
140
160

Th
ro

ug
hp

ut
 (M

pp
s)

rx_q0packets
rx_out_of_buffer
rx_discards_phy
rx_packets_phy

H/W-side limitation
has to be removed

Input traffic equals
to wire-rate

Successfully
processed rate

Drop caused by
S/W-side

Drop caused by
H/W-side

 Roadblocks of I/O parallelization in VNFs
 Unexplicit H/W-level contentions

 Proposal: Static role assignment
 Based on the analysis of packet reception mechanism
 Removed most of overheads in S/W-side
 H/W-side limitation obstructs the improvement of

throughput
 Future work

 Further investigation and optimization for linear scaling

23Conclusion

