IEEE CloudNet 2020 November 9, 2020 1

Roadblocks of I/O Parallelization: Removing H/W Contentions by Static Role Assignment in VNFs

Masahiro Asada⁺¹Ryota Kawashima⁺¹Hiroki Nakayama⁺²Tsunemasa Hayashi⁺²Hiroshi Matsuo⁺¹

- ⁺¹ Nagoya Institute of Technology
- ⁺² BOSCO Technologies Inc.

Problem: Roadblocks of packet I/O parallelization

Proposal: Static role assignment

Based on careful analyses of packet receiving mechanism
 Independent from specific H/W features

Contribution

Flatten CPU cycle consumptions \rightarrow Minimize S/W-side overhead

Remaining Problem

Throughput is not improved due to H/W-side limitation

Background

- Parallelization Schemes
- Proposal
- Evaluation
- Discussion, Conclusion

>10 Gbps is challenging to reach

Hardware accelerators are not silver bullets e.g. SmartNIC with FPGA

Pros.

Optimize specific workloads

Cons.

Inflexible deployment
 Long time to deploy
 Difficult to share H/W resources
 Costly development
 Vendor-specific tools, procedures

Network flexibility should be kept by software

Background
 Parallelization Schemes
 Flow-level

- **D** Packet-level
- □ I/O-level
- Proposal
- Evaluation
- Discussion, Conclusion

Packet Processing with DPDK

Flow-level Parallelization

RSS: Receive Side Scaling

Distribute packets to cores with the hash value of 5-tuple⁺

Not work with a single-flow traffic

Finer-grained parallelization than flows is needed

Src IP / Dst IP / Src port / Dst port / Protocol number

Multiple packet processing models⁺

 Designing Virtual Network Functions for 100 GbE Network Using Multicore Processors.
 P. Li et al.
 2017 ACM/JEEE Symposium on Architectures for

2017 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)

I/O must be included in parallelization

Simple I/O Parallelization

 ⁺ Datapath Parallelization for Improving the I/O Performance on NFV Nodes (in Japanese).
 M. Asada, R. Kawashima, H. Nakayama, T. Hayashi, and H. Matsuo IEICE Technical Report (NS2019-37), 2019

Unexpected growth of overheads

Considering H/W behaviors is needed for I/O parallelization

Background
Parallelization Schemes
Proposal
Evaluation
Discussion, Conclusion

Fast Datapath by I/O Parallelization

- Utilize performance of multi-core processors
- Utilize DPDK's packet batching
- Independent from Specific Hardware Features
 - Enable familiar resources for flexibility
 - Development tools
 - Programming languages
 - OS, API
 - Servers

Rx-Mechanism Awareness

Consider the interaction with H/W

Two aspects in a receive queue H/W interface: Interactions with a NIC S/W ring: Software-friendly data structure of packets

Proposal: Static Role Assignment

- Role of CPU cores (threads)
 - Parent: H/W Access Executed by a single thread to avoid H/W contentions
 - Worker: Packet Acquisition Pure S/W operations which can be parallelized
- Assumed applications
 - Stateless per-packet processing (e.g. routing, address translation, encapsulation)

Comparation of Parallelization Patterns

Background

Parallelization Schemes

Proposal

Evaluation

Discussion, Conclusion

Evaluation Environment

	DuT Server	Test Server
CPU	Intel Core i9-7940X @3.10GHz 14 cores (HT disabled)	Intel Core i7-7900X @3.30GHz 10 cores (HT disabled)
Mem	32 GB DDR4	64 GB DDR4
NIC	Mellanox Technologies ConnectX-5 Ex 100 GbE Dual-Port	
OS	CentOS 7.7	CentOS 7.7
DPDK	v19.11	v19.05
TRex		v2.56

Consumed CPU Cycles per Packet

Number of Processed Packets

Throughput

S/W is not a bottleneck

H/W-side limitation

- Background
- Parallelization Schemes
- Proposal
- Evaluation
- **Discussion, Conclusion**

Packet Drop inside H/W

Roadblocks of I/O parallelization in VNFs
 Unexplicit H/W-level contentions

- Proposal: Static role assignment
 - Based on the analysis of packet reception mechanism
 - Removed most of overheads in S/W-side
 - H/W-side limitation obstructs the improvement of throughput

Future work

Further investigation and optimization for linear scaling