
Roadblocks of I/O Parallelization:
Removing H/W Contentions by
Static Role Assignment in VNFs

Masahiro Asada†1 Ryota Kawashima†1 Hiroki Nakayama†2

Tsunemasa Hayashi†2 Hiroshi Matsuo†1

1

†1 Nagoya Institute of Technology
†2 BOSCO Technologies Inc.

IEEE CloudNet 2020
November 9, 2020

 Problem: Roadblocks of packet I/O parallelization

2Summary

 Proposal: Static role assignment
 Based on careful analyses of packet receiving mechanism
 Independent from specific H/W features

Contribution

Remaining Problem

Flatten CPU cycle consumptions
→ Minimize S/W-side overhead

Throughput is not improved
due to H/W-side limitation

Rx
queue Worker

thread

Worker
thread

 Sharing a single Rx queue
Trivial arbitration cost

Increased CPU cycles due to
unexplicit H/W-level contention

H/W-level
contention

Background
 Parallelization Schemes
 Proposal
 Evaluation
Discussion, Conclusion

3Contents

>10 Gbps is challenging to reach

4Requirement: Boost Performance

0

10

20

30

40

50

60

70

OVS-DPDK
(Bare-metal)

OVS-DPDK
(VM)

OVS
(Bare-metal)

Th
ro

ug
hp

ut
(M

pp
s)

Forwarding performance of
64-byte packets†

Theoretical (10 GbE)

Theoretical (40 GbE)

DPDK: Data Plane Development Kit
OVS: Open vSwitch

(1 flow / 1 thread)

† Evaluation of Forwarding Efficiency in NFV-nodes toward
Predictable Service Chain Performance.
R. Kawashima et al.
IEEE Transactions on Network and Service Management, 2017

 >800 Gbps Ethernet comes
 Limited per-core performance

100 Gbps with 64-byte packets

Processing Time: 5.12 nsec/packet
CPU cycles: ≦17 cycle/packet

I/O Parallelization is needed

†† Make the most out of last level cache in intel processors.
A. Farshin et al.
Proceedings of the Fourteenth EuroSys Conference, 2019

††

Hardware accelerators are not silver bullets
 e.g. SmartNIC with FPGA

5Requirement: Keep Flexibility

Pros.

Cons.

Optimize specific workloads

 Inflexible deployment
 Long time to deploy
 Difficult to share H/W resources

Costly development
 Vendor-specific tools, procedures

Network flexibility should be kept by software

 Background
 Parallelization Schemes

 Flow-level
 Packet-level
 I/O-level

 Proposal
 Evaluation
Discussion, Conclusion

6Contents

7Packet Processing with DPDK

CPU Core

TxProcessRx

 Concept
 1 core ⇔ 1 thread
 Packet batching

 For performance improvement
 Batch many packets
 Reduce CPU cycles

Rx
queue

Tx
queue

processing_loop()
{

N = 32; /* Default */
packets[N];
rx_queue;
tx_queue;

while (true)
{

rx_burst(rx_queue, packets);
process(packets);
tx_burst(tx_queue, packets);

}
}

Packet processing loop

8Flow-level Parallelization

Rx queue

0

1

2

3

CPU

C0

C1

C2

C3

Flow 0

Flow 0

Flow 1

Flow 2

Flow 3

Flow 1

Flow 2

Flow 3

Flow 0

Flow 0

Flow 0

Flow 0

Hash()
Rx queue ID5-tuple

Multi-queue NIC

C0

 Per-flow performance is not improved
 Not work with a single-flow traffic

Finer-grained parallelization than flows is needed

 RSS: Receive Side Scaling
 Distribute packets to cores with the hash value of 5-tuple†

† Src IP / Dst IP / Src port / Dst port / Protocol number

Multiple packet processing models†

9Packet-level Parallelization

Worker
thread
Worker
thread
Worker
thread

Parent
thread

Parent/Worker Model

I/O is a bottleneck

Receiving process is not parallelized

† Designing Virtual Network Functions for 100 GbE
Network Using Multicore Processors.
P. Li et al.
2017 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS)

I/O must be included in
parallelization

Software-based
approach

Parent decides a Worker
to send packets

Rx
queue

Added arbitration to a receive queue†

10Simple I/O Parallelization

Considering H/W behaviors is needed for I/O parallelization

Rx
queue

CPU Core 0
TxProcess

CPU Core 1
TxProcess

CPU Core 2
TxProcess

Rx

Rx

Rx

Access
Arbitration

DMA

† Datapath Parallelization for Improving the I/O Performance on
NFV Nodes (in Japanese).
M. Asada, R. Kawashima, H. Nakayama, T. Hayashi, and H. Matsuo
IEICE Technical Report (NS2019-37), 2019

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 2 3 4

Cy

cl
es

 p
er

 b
at

ch
 (=

 3
2

pa
ck

et
s)

Cores

Unexpected growth of
overheads

Be
tt

er

 Background
 Parallelization Schemes
 Proposal
 Evaluation
Discussion, Conclusion

11Contents

 Fast Datapath by I/O Parallelization
 Utilize performance of multi-core processors
 Utilize DPDK’s packet batching

 Independent from Specific Hardware Features
 Enable familiar resources for flexibility

 Development tools
 Programming languages
 OS, API
 Servers

 Rx-Mechanism Awareness
 Consider the interaction with H/W

12Requirements

Mbuf
(provided by DPDK)

 Two aspects in a receive queue
 H/W interface: Interactions with a NIC
 S/W ring: Software-friendly data structure of packets

13H/W Contentions in A Receive Queue

Rx
queue

S/W ringH/W interface

Raw Ethernet frame AppNIC

DMA Rx function call

Pointer array of raw packets Pointer array of Mbuf

Parallelization without
contentions

Parallelization causes
H/W-level contentions

Rx queue

14Proposal: Static Role Assignment

CPU Core 1: Worker
TxProcess

CPU Core 2: Worker
TxProcess

Rx

Rx

CPU Core 0:
Parent

Rx

S/W ring
H/W interface

H/W
Access

Packet Acquisition

 Role of CPU cores (threads)
 Parent: H/W Access ― Executed by a single thread

to avoid H/W contentions
 Worker: Packet Acquisition ― Pure S/W operations

which can be parallelized

 Assumed applications
 Stateless per-packet processing

(e.g. routing, address translation, encapsulation)

NIC

Core Role Division

✗Disabled ✓Enabled

Bu
ffe

r R
an

ge
 D

iv
is

io
n

✗
D

is
ab

le
d

Arbitration Arbitration and P/W

✓
En

ab
le

d

Only Range Division Proposal

15Comparation of Parallelization Patterns

Worker
Rx

Worker
Rx

Parent
Rx

Worker
Rx

Worker
Rx

Worker
Rx

Worker
Rx

Parent
Rx

Arbitration

Worker
Rx

Worker
Rx

Arbitration

 Background
 Parallelization Schemes
 Proposal
 Evaluation
Discussion, Conclusion

16Contents

17Evaluation Environment

DuT Server Test Server
CPU Intel Core i9-7940X @3.10GHz

14 cores (HT disabled)
Intel Core i7-7900X @3.30GHz
10 cores (HT disabled)

Mem 32 GB DDR4 64 GB DDR4
NIC Mellanox Technologies ConnectX-5 Ex 100 GbE Dual-Port
OS CentOS 7.7 CentOS 7.7
DPDK v19.11 v19.05
TRex ― v2.56

DuT Server

NIC NIC

Test Server

NIC NIC

Traffic
Generator

TRex

64-byte UDP traffic
100 GbE

DPDK
VNF (L2FWD)

Implemented

Only
Forwarding

18Consumed CPU Cycles per Packet

0

50

100

150

200

250

300

1 2 3 4

Cy

cl
es

Cores

Arbitration

1 2 4
Cores

Only Range
Division

1 2 4
Cores

Proposal

Entire
RX
Buffer
CAS
JoinBe

tt
er

Total cost

Reception

Operations to
independent areas

Arbitration

Buffer Range Division

Core Role Division

19Number of Processed Packets
1 Core

4 Cores

Parent thread in Proposal

(max. 1024)(max. 32)

(max. 32) CDF: Cumulative distribution function

Lower Load

S/W is not a bottleneck

20Throughput

1 2 4
Cores

Proposal

Core 3
Core 2
Core 1
Core 0

1 2 4
Cores

Only Range
Division

0

5

10

15

20

25

30

35

40

1 2 3 4

Rx
 T

hr
ou

gh
pu

t (
M

pp
s)

Cores

Arbitration

Be
tt

er
Performance

limitation

Overhead

S/W is not a bottleneck H/W-side limitation

 Background
 Parallelization Schemes
 Proposal
 Evaluation
Discussion, Conclusion

21Contents

22Packet Drop inside H/W

Rx queue

App
rx_packets_phy
148.22 Mpps

rx_discards_phy
111.41 Mpps rx_out_of_buffer

0.6568 Mpps

rx_q0packets
36.16 Mpps

H/W-side S/W-side

0
20
40
60
80

100
120
140
160

Th
ro

ug
hp

ut
 (M

pp
s)

rx_q0packets
rx_out_of_buffer
rx_discards_phy
rx_packets_phy

H/W-side limitation
has to be removed

Input traffic equals
to wire-rate

Successfully
processed rate

Drop caused by
S/W-side

Drop caused by
H/W-side

 Roadblocks of I/O parallelization in VNFs
 Unexplicit H/W-level contentions

 Proposal: Static role assignment
 Based on the analysis of packet reception mechanism
 Removed most of overheads in S/W-side
 H/W-side limitation obstructs the improvement of

throughput
 Future work

 Further investigation and optimization for linear scaling

23Conclusion

