IEEE NFV-SDN 2018 Best Paper Award

IOVTee: A Fast and Pragmatic Software-based Zero-copy/Pass-through Mechanism for NFV-nodes

Assist. Prof. **Ryota Kawashima** Nagoya Institute of Technology, Japan

Softwarization for Ultimate Flexibility

Traditional Networks

XForwXrdingX

Highly flexible infrastructures are crucial for 5G/cloud services

Softwarized Networks

Multi-Slicing

XConvexgenced

Xconvexgenced

High-Speed Communications

Core Network Traffic

Are software-based approaches viable ?

The Universal Dataplane

White Box Switches vs. COTS Servers

The Reality of NFV-nodes (COTS Servers)

vhost-user (de-facto)

/

Zero-copy Approaches

* J. Hwang, et al., "NetVM: High Performance and Flexible Networking Using Virtualization on Commodity Platforms", IEEE TNSM, vol. 12, no. 1, pp. 34-47, 2015

** D. Wang, et al., "Zcopy-vhost: Eliminating Packet Copying in Virtual Network I/O", Proc. IEEE LCN, pp. 632-639, 2017

(H/W) Pass-through Approaches

SR-IOV

9

Problem Statements

Concerns	Description	Methods
Security	Exposing the host memory	NetVM, IVSHMEM
Transparency	VNFs are aware of the host environment	NetVM, IVSHMEM, Zcopy-vhost, SR-IOV
Portability	The method broadly depends on other system components	Zcopy-vhost
Traceability	Internal behaviors are hidden	SR-IOV
Container	Container-based VNFs are not supported	IVSHMEM, Zcopy- vhost

The existing methods have pragmatic problems

A yet another practical approach is needed

Proposed Approach (IOVTee)

Step-by-Step Description

Are Problems Resolved ?

Concerns	Description	Resolved?
Security	Host memory is NOT exposed to VNFs	
Transparency	IOVTee is completely hidden by the vhost-user interface	
Portability	IOVTee is implemented only within the host DPDK internals	
Traceability	IOVTee is a complete software-based approach	
Container	The vhost-user interface is not changed	$\overline{\checkmark}$

IOVTee is a pragmatic zero-copy/pass-through mechanism

What about the performance ?

Three Experiments

Environment

Exp1: Physical/Virtual Ring Sizes

IOVTee

Exp2: Tx/Rx Zero-copy Methods

Zero-copy for Rx path is effective

Current implementation could be further optimized

Exp3: Packet Sizes

IOVTee is superior for any packet size

Baremetal vs. Virtual Machine

(64-byte packets, Single datapath)

Zero-copy is effective, but not enough

Summary

IOVTee: A yet another Zero-copy/Pass-through method

Fast

19 Mpps (64-byte)90 Gbps (1518-byte)

Pragmatic

23

Security Transparency Portability Traceability Container

Future Work

- Further optimizing current implementation
- Identifying actual performance bottleneck