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Softwarization for Ultimate Flexibility
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Traditional Networks

Softwarized Networks

Highly flexible infrastructures 

are crucial for 5G/cloud services
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High-Speed Communications
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Core Network Traffic

Marcus K. Weldon, “The Future X Networks”

Are software-based approaches viable ?
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White Box Switches vs. COTS Servers
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The Reality of NFV-nodes (COTS Servers)
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vhost-user (de-facto)
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Zero-copy Approaches
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NetVM*

* J. Hwang, et al., “NetVM: High Performance and Flexible Networking Using Virtualization on Commodity Platforms”,  

IEEE TNSM, vol. 12, no. 1, pp. 34-47, 2015

Zcopy-vhost**
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** D. Wang, et al., “Zcopy-vhost: Eliminating Packet Copying in Virtual Network I/O”, Proc. IEEE LCN, pp. 632-639, 2017
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(H/W) Pass-through Approaches
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Problem Statements
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Concerns Description Methods

Security Exposing the host memory NetVM, IVSHMEM

Transparency VNFs are aware of the host 

environment

NetVM, IVSHMEM, 

Zcopy-vhost, SR-IOV

Portability The method broadly depends on other 

system components

Zcopy-vhost

Traceability Internal behaviors are hidden SR-IOV

Container Container-based VNFs are not 

supported

IVSHMEM, Zcopy-

vhost

The existing methods have pragmatic problems

A yet another practical approach is needed
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virtio
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Proposed Approach (IOVTee)
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Step-by-Step Description 
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2. Packets are stored in the NIC’s physical queue

0.  The Rx queue points to the memory buffer

0.  The Rx queue points to the memory buffer

1. The points are redirected

(Rx Queue Mapping)

X

Packet

3.  Packets are DMAed

(DMA-to-VNF)

3.  Updated

4.  MBufs are created

5.  vSwitch’s processing

6. vhost-user comm.

(Zero-copy)

6.  Updated

7.  MBufs are created

8.  VNF’s processing



Are Problems Resolved ?
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Concerns Description Resolved?

Security Host memory is NOT exposed to VNFs

Transparency IOVTee is completely hidden by 

the vhost-user interface

Portability IOVTee is implemented only within 

the host DPDK internals

Traceability IOVTee is a complete software-based 

approach

Container The vhost-user interface is not changed

IOVTee is a pragmatic zero-copy/pass-through mechanism

What about the performance ?
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Three Experiments
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Environment
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Exp1: Physical/Virtual Ring Sizes
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Default 

vhost-user

IOVTee

Lower cache hit ratio

Virtual must be greater than Physical

Higher cache hit ratio



Exp2: Tx/Rx Zero-copy Methods 
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Tx: copy

Tx: zero-copy

Tx: fake-zero-copy
Tx: SR-IOV

20% boost

Unstable and 

poor performance

Tx: zero-copy

worsens performance

Overhead of IOVTee

Zero-copy for Rx path is effective

Current implementation could be further optimized



Exp3: Packet Sizes 
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19 Mpps for 

64-byte packets

Worst performance

for mid-size packets

Tx: zero-copy/SR-IOV are 

effective for large-size packets

IOVTee is superior for any packet size

90 Gbps for 

1518-byte packets



Baremetal vs. Virtual Machine
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Summary
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IOVTee: A yet another Zero-copy/Pass-through method

Fast

19 Mpps (64-byte)

90 Gbps (1518-byte)

Pragmatic
Security     Transparency

Portability  Traceability

Container

• Further optimizing current implementation

• Identifying actual performance bottleneck

Future Work


