
IOVTee: A Fast and Pragmatic

Software-based Zero-copy/Pass-through

Mechanism for NFV-nodes

Assist. Prof. Ryota Kawashima

Nagoya Institute of Technology, Japan

Best Paper Award

Contents
1

Backgrounds1

Related Work2

IOVTee3

Evaluation4

Conclusion5

Softwarization for Ultimate Flexibility
2

Traditional Networks

Softwarized Networks

Highly flexible infrastructures

are crucial for 5G/cloud services

Forwarding

Functions

Convergenced

Convergenced

Convergenced

Multi-Slicing

High-Speed Communications
3

Core Network Traffic

Marcus K. Weldon, “The Future X Networks”

Are software-based approaches viable ?

Softwares

Hardwares

400G Ethernet

White Box Switches vs. COTS Servers
4

White Box Switch

ASIC Memory

Mgmt. OS

CPU

D-Plane C-Plane

COTS Server
MemoryCPU

Mgmt. OSDPDK

Virtual SwitchVNF

DPDK

VNF

vHW
DPDK

VNF

MemoryCPU

D-Plane C-Plane

NF

TCAM

HIGH PERFORMANCE

LOW PERFORMANCE

The Reality of NFV-nodes (COTS Servers)
5

0

20

40

60

80

100

120

140

160

H/W Baremetal Container VM

Basic Forwarding Throughput (64B)[Mpps]

100G

40G

10G

NFV-node

(single datapath)
The cost of flexibility is too

high a price !

Contents
6

Backgrounds1

Related Work2

IOVTee3

Evaluation4

Conclusion5

vhost-user (de-facto)
7

Driver

DPDK

VNF

virtio

VM

vhost-user

Driver

DPDK

Virtual Switch

NIC

DPDK

VNF

virtio

Container

Driver
User-space to User-space

Packet copy
(each direction)

Tx zero-copy
(optional)

Zero-copy Approaches
8

NetVM*

* J. Hwang, et al., “NetVM: High Performance and Flexible Networking Using Virtualization on Commodity Platforms”,

IEEE TNSM, vol. 12, no. 1, pp. 34-47, 2015

Zcopy-vhost**

NIC

Driver

DPDK

Packet Core

Engine
Packet Pool

Emulated PCI

NetLib

VNF

VM

Zero-copy

Phy-Phy Phy-Phy Phy-Phy Phy-Phy

Packet Packet

Vir-Phy Vir-Phy

Virtual Switch

** D. Wang, et al., “Zcopy-vhost: Eliminating Packet Copying in Virtual Network I/O”, Proc. IEEE LCN, pp. 632-639, 2017

Emulated PCI

NetLib

VNF

VM

VNF

DPDK

Phy-Vir Phy-Vir

VM

Shared by VMs

Direct access

Forwarding

Decision

Swapped

(H/W) Pass-through Approaches
9

SR-IOV

NICVF VF

DPDK

VNF

DPDK

VNF

VM Container

Virtual Switch

Bypassed

Dedicated to

the physical NIC

Hairpin routing for

inter-guest comm.

VF Driver VF Driver

Pass-through

Problem Statements
10

Concerns Description Methods

Security Exposing the host memory NetVM, IVSHMEM

Transparency VNFs are aware of the host

environment

NetVM, IVSHMEM,

Zcopy-vhost, SR-IOV

Portability The method broadly depends on other

system components

Zcopy-vhost

Traceability Internal behaviors are hidden SR-IOV

Container Container-based VNFs are not

supported

IVSHMEM, Zcopy-

vhost

The existing methods have pragmatic problems

A yet another practical approach is needed

Contents
11

Backgrounds1

Related Work2

IOVTee3

Evaluation4

Conclusion5

virtio
Driver

DPDK

VNF

Container

DPDK

VNF

virtio

VM

Driver

Proposed Approach (IOVTee)
12

vhost-user

NIC

Driver

DPDK

Virtual Switch

DMA

Rx Queue Mapping
(DMA-to-VNF)

Packet Processing

on the Host

Vhost-user Interface

Step-by-Step Description
13

NIC

Driver

DPDK

Virtual Switch

Packet

DPDK

VNF

virtio
Driver

Mempool

Mempool

MBuf Buffer

BufferMBuf

2. Packets are stored in the NIC’s physical queue

0. The Rx queue points to the memory buffer

0. The Rx queue points to the memory buffer

1. The points are redirected

(Rx Queue Mapping)

X

Packet

3. Packets are DMAed

(DMA-to-VNF)

3. Updated

4. MBufs are created

5. vSwitch’s processing

6. vhost-user comm.

(Zero-copy)

6. Updated

7. MBufs are created

8. VNF’s processing

Are Problems Resolved ?
14

Concerns Description Resolved?

Security Host memory is NOT exposed to VNFs

Transparency IOVTee is completely hidden by

the vhost-user interface

Portability IOVTee is implemented only within

the host DPDK internals

Traceability IOVTee is a complete software-based

approach

Container The vhost-user interface is not changed

IOVTee is a pragmatic zero-copy/pass-through mechanism

What about the performance ?

Contents
15

Backgrounds1

Related Work2

IOVTee3

Evaluation4

Conclusion5

Three Experiments
16

Driver

Driver

DPDK

VNF

virtio

DPDK

Virtual Switch

NIC

1. Rx Queue Size

1. Rx Queue Size

2. Tx/Rx Optimizations

Packet Packet3. Packet Size

Various Rx Queue

Sizes
1

Various Tx/Rx

Optimizations
2

Various Packet Sizes3

Environment
17

Driver

Driver

DPDK

VNF

virtio

DPDK

Virtual Switch

NIC

Driver

DPDK

MoonGen

NIC

Device under Test

Tester

100 GbE

Single CPU core

Dual CPU cores

(Rx/Tx)

Exp1: Physical/Virtual Ring Sizes
18

Default

vhost-user

IOVTee

Lower cache hit ratio

Virtual must be greater than Physical

Higher cache hit ratio

Exp2: Tx/Rx Zero-copy Methods
19

Tx: copy

Tx: zero-copy

Tx: fake-zero-copy
Tx: SR-IOV

20% boost

Unstable and

poor performance

Tx: zero-copy

worsens performance

Overhead of IOVTee

Zero-copy for Rx path is effective

Current implementation could be further optimized

Exp3: Packet Sizes
20

19 Mpps for

64-byte packets

Worst performance

for mid-size packets

Tx: zero-copy/SR-IOV are

effective for large-size packets

IOVTee is superior for any packet size

90 Gbps for

1518-byte packets

Baremetal vs. Virtual Machine
21

0

10

20

30

40

50

60

70

Baremetal Default IOVTee

Basic Forwarding Throughput

40G

10G

(64-byte packets, Single datapath)

What causes

this gap ?

Zero-copy is effective, but not enough

[Mpps]

Contents
22

Backgrounds1

Related Work2

IOVTee3

Evaluation4

Conclusion5

Summary
23

IOVTee: A yet another Zero-copy/Pass-through method

Fast

19 Mpps (64-byte)

90 Gbps (1518-byte)

Pragmatic
Security Transparency

Portability Traceability

Container

• Further optimizing current implementation

• Identifying actual performance bottleneck

Future Work

