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Abstract—Distributed key-value stores (D-KVS) are critical
backbone for SNS and cloud services. Some D-KVS are based
on a ring architecture with multiple database nodes to handle
large amount of data. Any of them can receive queries from
clients, and the node forwards queries to an adequate node if
necessary. Therefore, this architecture causes heavy overhead of
packet processing for each node. Some D-KVS have adopted
fast packet processing frameworks like DPDK, but this is not
enough to handle huge amount of requests. We introduce a query
aggregation method to D-KVS to reduce the network traffic. In
our approach, client queries are aggregated into a few large-
sized query packets by a centralized proxy. The proxy receives
every query from the clients, and it routes aggregated queries to
the destination nodes. The proxy is built on top of DPDK-based
network stack and can deal with the growing of the clients by
increasing the number of CPU cores for packet handling. We
evaluated with the environment of three Cassandra nodes linked
with 10 Gbps network. Our approach improved throughput by
19% compared with the non-proxy Cassandra.

Index Terms—Distributed Key-Value Store, Aggregation,
Query Routing, Proxy, DPDK, Many-core

I. INTRODUCTION

Distributed key-value stores (D-KVS) are one of critical
backbone for social networking services and cloud services
[1]. D-KVS distributes the load among the database nodes to
handle large amount of data. Some D-KVS, such as Apache
Cassandra [2] and Amazon Dynamo [3], use a ring architecture
that any node can be a coordinator for the clients, and the node
forwards the query to the appropriate node getting or storing
the requested data. In this architecture, the clients do not have
to care about the location of the data, but the overhead of
query forwarding increases.

Clients could directly send their queries to the appropriate
nodes to eliminate the forwarding. However, additional infor-
mation (e.g. the assignment of the keys) is required to find out
the destination nodes, which can degrade entire throughput
of D-KVS. KVS workloads can be large amount of small-
sized key-value pairs [4] and their queries consist of a lot of
small messages. Many existing studies [5] [6] [7] have shown
that the network stack can be performance bottleneck for such
workloads because costly processing like context switch and
packet copy between the kernel and the user spaces is required
for each packet.

Some D-KVS have adopted fast packet processing frame-
works like DPDK [8] to mitigate the processing overhead.

ScyllaDB [9] uses a fast user-space network stack based on
Seastar [10] and DPDK, and its throughput is 10 times higher
than that of Cassandra [11]. However, the existing study [12]
has reported that using a fast packet I/O is not enough to
achieve the wire-rate of the high bandwidth networks (over 10
Gbps). Therefore, further improvement of packet processing
efficiency is required.

Packet aggregation is a well-known technique to increase
the network performance by reducing the number of packets.
NetAgg [13] decreases the traffic amount of MapReduce
and distributed search engine, and improved throughputs of
Hadoop and Solr by up to 5.2 times and 9.3 times respectively.
PA-Flow [14] achieved 1.7 times higher throughput than that
of a DPDK-based system by aggregating consecutive outgoing
packets. These studies showed that packet aggregation is a key
to efficiently handle huge amount of small-size requests, and
we believe that this approach is effective for D-KVS involving
lots of small key-value queries.

In this paper, we propose a proxy-based query aggregation
method. The proxy is introduced between the clients and the
database nodes. Clients communicate with the proxy and the
client queries are aggregated into a few large-sized query pack-
ets by the proxy. The proxy parses the query and calculates
the destination because the same destination queries should be
aggregated to decrease the forwarding. The proxy is built on
top of DPDK-based network stack and many-core CPU. Using
DPDK mitigates the overhead of the query forwarding, and the
proxy can deal with the growing of the clients by increasing
the number of CPU cores for packet handling.

Even though the proxy incurs inevitable forwarding, query
aggregation brings far more performance merit by the reduc-
tion of the total number of packets. In addition to improving of
performance with proxy, this centralized architecture enables
exclusion control without inter-node communication. We focus
on the effect of a proxy-based query aggregation in this paper.

The remainder of the paper is organized as follows. We
explain a basic architecture of D-KVS and its problem in
Section II. In Section III, we present the related work. In
Section IV, we explain the proxy-based query aggregation
method. The implementation of our proposal is described
in Section V. In Section VI, we evaluate the throughput of
our proposed architecture with the proxy. Finally, we present
conclusions and future work in Section VII.
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Fig. 1. A ring architecture

II. THE ARCHITECTURE OF D-KVS

D-KVS can be categorized by how to distribute data to each
node. GFS [15], a storage infrastructure of Google Bigtable
[16], uses a master-slave architecture. In this architecture, the
master node is used to place the data and monitors the data
node. Clients ask the master node which data node has the
requested data. This architecture has a crucial performance
concern such that the requests concentrate on the master node.
Amazon Dynamo [3] and Apache Cassandra use a ring archi-
tecture to avoid the bottleneck. In this architecture, all nodes
can act as both a master node and a data node. Therefore, the
aforementioned performance bottleneck can be avoided. We
describe the processing flow of the ring architecture and its
problem in the following subsections.

A. Ring Architecture

In the ring architecture, all nodes can receive query requests
from any client because all of them can be a coordinator
forwarding the queries to the destination nodes. Distributing
query requests can average the load of query processing among
the nodes. In this architecture, clients need not care about the
location of data.

B. The Performance Degradation by Query Forwarding

Figure 1 shows the processing flow of the query request.
The destination node is determined by an algorithm (e.g.
consistent hashing). The number of query forwarding between
the database nodes increases as the ring size grows. If clients
directly access the nodes storing data, only two packet trans-
fers are required. Otherwise, the additional communications
of the query and result are required between the coordinator
node and the data node. Therefore, the forwarding doubles the
communication overhead.

III. RELATED WORK

A. Consistent Hashing

Many of D-KVS, such as Amazon Dynamo, Cassandra,
memcached [17] and Redis [18], use consistent hashing [19]
to distribute data. Amazon Dynamo and Cassandra compute
the destination of the query on the server. All of their nodes
accept the query, and forward the query to the destination
node. Memcached computes the destination node on the client.
This method does not need forwarding among the cluster, but
additional communications are required to inform the client
of the server configuration. Redis can compute the destination
both on the client and on the server. In our method, the proxy
computes the destination and forwards the queries.

B. Faster Packet Processing

ScyllaDB [9] is a Cassandra-compatible D-KVS and inter-
nally uses a fast user-space network stack based on Seastar
[10] and DPDK. Evaluations using YCSB [20] benchmark
showed that ScyllaDB achieved 10 times higher throughput
than that of original Cassandra implementation. In addi-
tion, memcached with Seastar has achieved 3.2 times higher
throughput than the original memcached using the network
stack in the linux kernel [21]. However, existing study [12]
has reported that using a fast packet I/O is not enough to
achieve the wire-rate of the network with large amount of short
packets. Therefore, further improvement of packet processing
efficiency is required.

C. Aggregation Method

Luo Mai et al. proposed NetAgg [13] to decrease the
traffic amount by pre-aggregating data. Data center appli-
cations, such as batch processing or search engine, use a
partition/aggregation pattern. In this pattern, tasks are first
partitioned across servers that locally process data, and then
those partial results are aggregated. In this aggregation step,
large amount of traffic gathers to the edge servers and degrades
the throughput. NetAgg consists of Agg boxes, middlebox-like
designed servers, and connects them to each network switch.
Agg boxes perform the aggregation tasks instead of the edge
servers and gradually aggregate the data through the network
path. NetAgg improved throughput by 9.3 times with Apache
Solr query and 5.2 times with Hadoop job. This method can be
applied only to the applications using the partition/aggregation
pattern. Therefore, this method cannot be applied to D-KVS.

PA-Flow [14] is a packet aggregation method used on
Network Functions Virtualization (NFV) environment. The
packets produced by end servers get centered on upstream
network function, which degrade throughput. Their method
runs at the virtual network I/O layer like DPDK and aggregates
the same destined packets to decrease the number of packets.
Their method made efficient upstream network and improved
throughput by 1.7 times. Their method showed that combining
DPDK and aggregation method enables to improve throughput.

Our method introduces the PA-Flow-based packet aggre-
gation to D-KVS. The proxy aggregates the same destined
queries into single packet and forwards the packet.
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IV. PROPOSED WORK

In this section, we describe the system architecture of our
approach implemented to Cassandra.

A. Purpose

The purpose of our proposed method is to improve through-
put of D-KVS by aggregating the queries in the high-
performance proxy. The centralized architecture is achieved
by improving throughput.

B. System Architecture

Figure 2 shows the system architecture with proxy. Three
clients communicate with four Cassandra nodes via our proxy.
The proxy opens a connection to each Cassandra node on
startup.

1) Clients send the queries to the proxy.
2) The proxy finds out the destination nodes and aggregates

the queries.
3) The proxy forwards the aggregated query packets to the

destination nodes.
4) The destination nodes extract the embedded queries and

process each of them.
5) The destination nodes aggregate the results and respond

the aggregated result to the proxy.
6) The proxy extracts the results and sends each result to

the clients.

C. Components of Our D-KVS Architecture

1) Client: The clients only communicate with our proxy.
The clients do not need the state of the cluster because the
proxy routes the query. No change is required for the clients.

2) Cassandra node: Cassandra nodes receive the aggre-
gated query and extract embedded queries. The node processes
the queries sequentially and aggregate the result of the queries
in the same sequence. The node responds the result of the
aggregated query to the proxy. We add the extraction of queries
and the aggregation of queries to Cassandra.
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Fig. 3. Modified Cassandra protocol

3) Proxy: The proxy receives the queries from all clients
and aggregate the queries. The proxy aggregates queries which
have the same destination and directly sends to the destination
to eliminate the forwarding procedure. The queries arriving in
specified period are aggregated to limit the latency.

The proxy should use multiple CPU cores to separate its
tasks to multiple CPU-core-dominated threads, such as Rx
threads and Tx threads of clients, aggregation threads and
disaggregation threads.

D. Cassandra Protocol

Cassandra protocol is an application layer protocol used by
clients and Cassandra nodes. This protocol is used for the
requests of queries and the responses of results.

The query request and its response must have the same
stream ID. In our method, this header is used in commu-
nication between the client and the proxy not to change
the client. Cassandra nodes should distinguish whether the
received packet contains multiple queries or not. In addition,
the proxy must distinguish whose results are aggregated.
Therefore, we extend the Cassandra protocol.

Figure 3 shows our protocol header. Our determined custom
value (0x64) is specified in ’type’ field to indicate that the
queries are aggregated. We add three fields (’BodyCount,
’StreamID’ and ’ClientID’). The BodyCount field is the
number of embedded queries used by Cassandra nodes. The
StreamID and ClientID fields are added for each query to
remember the requesting clients and the original StreamID
respectively. The ClientID is assigned by the proxy. This
header is used in communication between the proxy and
Cassandra nodes.

V. IMPLEMENTATION

A. Cassandra Node

We describe the details of modifications to Cassandra for
our method. Figure 5 shows the processing added to Cassan-
dra. Cassandra nodes disaggregate the query using the Body-
Count field and execute queries. Cassandra nodes aggregate
the results of the queries and send to the proxy. We explains
the modified classes in the following.

1) Frame class: Frame class processes byte sequence of
the protocol header. The original Cassandra has fixed size of
header. In our method, we use variable length of header in the
case of aggregated query. If the type field indicates that the
queries are aggregated, Frame class handles the BodyCount,
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StreamID and ClientID field. The StreamID and ClientID
fields are used with the response.

2) Message class: In the Message class, MultiMap is used
storing the pair of StreamID and ClientID. The body of queries
are parsed with the number of embedded queries.

B. Proxy

The internal implementation of the proxy is shown in Fig.
4. DPDK and DPDK-ANS [22], a library of TCP/IP protocol

stack are used for fast packet processing. We implemented the
following logic in C++.

1) Startup: The proxy opens the connections for each
Cassandra node and gets ring information. Aggregation thread
and disaggregation thread are created in the proxy for each
node.

2) Receiving query from client: The proxy creates two
threads (Rx thread and Tx thread) for each client. When the Rx
thread receives the query, the Rx thread parses the query and
hashes the key and gets the destination. Rx thread enqueues the
query to the destination’s Request Queue with atomic opera-
tion (Blue line in Fig.4). Request Queue manages the structure
containing clientID, streamID and query. Aggregation thread
waits for the specified time and dequeues the queries with
atomic operation (Green line in Fig. 4). Finally, aggregation
thread aggregates the queries based on the protocol described
above and sends to the destination node.

3) Sending result to client: On receiving the result from
Cassandra node, disaggregation thread disaggregates the re-
sults and enqueue to client’s Response Queue. Tx thread
dequeues the result and sends to client.

VI. EVALUATION

In this section, we performed the following evaluation to
confirm the effectiveness of query aggregation and routing
with our proxy. As a client, we made a program asyn-
chronously sending queries. YCSB is implemented to send
the next query after receiving the result of the sent query.
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Fig. 6. Evaluation environment: one client and three Cassandra nodes

TABLE I
SPECIFICATION OF HARDWARE OF PROXY

OS Ubuntu 16.04
CPU Intel Core i9-7900K / 3.3 GHz (10 cores)

Memory 64 GB
Storage 1 TB SATA HDD
Network Intel X540-T2 (10 GbE, dual port)

TABLE II
SPECIFICATION OF HARDWARE OF CLIENT AND CASSANDRA NODE

OS Ubuntu 16.04
CPU Intel Core i5-4460 / 3.2 GHz (4 cores)

Memory 16 GB
Storage 120 GB SATA SSD
Network Intel X540-T2 (10 GbE, dual port)

Cassandra version 2.2.2

To simplify the implementation of proxy, we can assign
only one client for one physical machine. In that case, we
cannot aggregate more queries than the number of client.
Therefore, we made a program that asynchronously sends a
query using Cassandra Driver and measured the throughput at
the client. We also investigated the distribution of the number
of aggregated queries.

A. Evaluation Environment

The evaluation environment is as shown in Figure 6. We
assigned different network segments to clients and Cassandra
cluster. The proxy uses a dual port Ethernet, one port belongs
to the network of the client and another belongs to the network
of Cassandra cluster. The performance of the computer used in
the experiment is shown in Table I and II. As a client, we use a
program that sends queries asynchronously using Java Driver
for Apache Cassandra [23]. In the workload, we executed
100,000 INSERT operations with 20 bytes of key-value items.
For comparison, we used two types of conventional client with
Cassandra Driver. One is a TokenAware client which calculates
the destination and sends the node directly. The TokenAware
client does not cause the forwarding. Another is a RoundRobin
client which sends the query to one of the three nodes in turn.
The RoundRobin client can cause the forwarding.

B. Evaluation Results

1) Throughput evaluation: Figure 7 shows the throughput
of the conventional method and the proposed method. The
vertical axis shows the throughput. The green bars show the
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Fig. 8. The distribution of the number of aggregated queries with 10 µs
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Fig. 9. The distribution of the number of aggregated queries with 20 µs
waiting time

conventional methods TokenAware and RoundRobin. The or-
ange bars show the proposed method with proxy. We specified
the waiting time from 1 µs and 30 µs. When the waiting time
is set to 20 µs, our method achieved 19% higher throughput
than RoundRobin method. From the result, it is considered
that query aggregation method improves throughput.

2) Evaluating the number of aggregated queries: Figure
8 and 9 show the distribution of the number of aggregated
queries in a proxy with a wait time of 10 µs and 20 µs re-



spectively. The horizontal axis shows the aggregation number.
The vertical axis shows the number of aggregated queries.
When we prolonged the waiting time from 10 µs to 20 µs,
more queries were aggregated at a time. The increasing of
aggregated queries decreases the processing of network, which
improved throughput.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the proxy-based query aggre-
gation method for distributed key-value stores. The proxy-
based query aggregation results in reduction of traffic amount
and improvement of D-KVS performance. Our evaluation
result showed that the query aggregation method achieved
19% higher throughput than that of the original non-proxy
Cassandra.

As future work, we extend our centralized architecture to
achieve a lock mechanism. A strong consistency is required
among database nodes to implement the lock mechanism on
D-KVS. Ensuring this consistency incurs a communication
overhead. Implementing a lock mechanism on the proxy
enables mutual exclusion and transaction mechanisms without
the communication overhead.
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