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Abstract—Apache Spark caches reusable data into mem-
ory/disk. From our preliminary evaluation, we have found that
a memory-and-disk caching is ineffective compared to disk-only
caching when memory usage has reached its limit. This is because
a thrashing state involving frequent data move between the
memory and the disk occurs for a memory-and-disk caching.
Spark has introduced a thrashing avoidance method for a single
RDD (Resilient Distributed Dataset), but it cannot be applied to
workloads using multiple RDDs because prior detection of the
dependencies between the RDDs is difficult due to unpredictable
access pattern. In this paper, we propose a thrashing avoidance
method for such workloads. Our method adaptively modifies the
cache I/O behavior depending on characteristics of the workload.
In particular, caching data are directly written to the disk instead
of the memory if cached data are frequently moved from the
memory to the disk. Further, cached data are directly returned
to the execution-memory instead of the storage-memory if cached
data in the disk are required. Our method can adaptively
select the optimal cache I/O behavior by observing workload
characteristics at runtime instead of analyzing the dependence
among RDDs. Evaluation results showed that execution time was
reduced by 33% for KMeans using the modified Spark memory-
and-disk caching rather than the original.

Index Terms—Distributed processing, Big Data, Apache Spark,
RDD, Memory cache, memory-and-disk caching

I. INTRODUCTION

The amount of data is dramatically increasing due to the
high popularity and adoption of IoT [1]. Apache Spark [2]
is a widely used distributed processing framework for various
gigantic workloads such as machine learning [3] and graph
processing [4] to analyze gathered IoT data. Spark can effi-
ciently process such large workloads by keeping intermediate
data on the memory [5].

Spark explicitly caches reusable data to prevent them from
being reconstructed as persisted data. This feature is ef-
fective for iterative processing workloads [6] because input
and intermediate data are frequently reused. Such a caching
mechanism achieves 15 times better performance than that of
a traditional disk-based caching seen in Apache Hadoop [7].
However, performance gets worse when caching data cannot
be stored into the storage-memory [8] because uncached data
are deleted and they must be regenerated as needed. To prevent
from performance degradation, Spark supports three types of
cache stores, MEMORY ONLY, DISK ONLY, and MEM-
ORY AND DISK. The DISK ONLY usage always writes
caching data to the disk to prevent the deletion and regenera-
tion of data. The MEMORY AND DISK usage puts out least

recently used data to the disk, while keeping heavily used data
on the memory. However, this usage can raise a thrashing state
involving frequent data move between the memory and the
disk. The thrashing heavily degrades the performance because
cached data are moved from the memory to the disk (drop)
when caching data in the memory (write operation) and
when using cached data in the disk (read operation).

Spark avoids the thrashing state when workloads involve a
single RDD that is a collection of data distributed to multiple
nodes. Specifically, caching data are directly written to the disk
instead of the memory and cached data are directly returned to
the execution-memory instead of the storage-memory. How-
ever, this method cannot be applied to workloads involving
multiple RDDs because prior detection of the dependencies
among RDDs is difficult.

Existing studies [9] [10] [11] showed that replacing the
cache management algorithm (LRU [12]) is effective for avoid-
ing frequent data drops for such workloads. LRC [9] keeps
track of the reference count of data to determine adequate data
to drop when the storage-memory has no space. This algorithm
provides a more accurate indicator for the likelihood of future
data access. LERC [10] detects dependencies between data
in workloads to cache whole dependent data in the memory.
WR [11] determines candidates to be dropped based on
computation cost, reference count and size of data compre-
hensively. These three algorithms determine dropping data
using various characteristics of data access pattern. However,
preliminary information and analysis with high computation
cost are necessary if workloads involve a large amount of
input/intermediate data and multistage processing.

In this paper, we propose a thrashing avoidance method for
workloads involving multiple RDDs. Our method adaptively
modifies the cache I/O behavior depending on characteristics
of workloads and does not need preliminary analysis or
execution. In particular, caching data are directly written to the
disk instead of the memory if frequent data drops occur while
executing write operations. Further, cached data are directly
returned to the execution-memory instead of the storage-
memory for read operations. Our method can adaptively
select the optimal cache I/O behavior by observing workload
characteristics at runtime instead of analyzing the dependence
among RDDs.

The remaining of this paper is organized as follows. Details
of data cache management for Spark and problems related



to the MEMORY AND DISK type of cache are shown in
Section II. Influence of the thrashing is estimated and the
optimal cache I/O behavior is researched by preliminary
evaluation in Section III. In Section IV, we propose a thrashing
avoidance method and describe its implementation details. The
proposed method is evaluated by measuring execution time
and the number of dropped data to check to avoid thrashing in
Section V, and while the related work is analyzed in Section
VI. Finally, this study is concluded and some future work
directions are supplied in Section VII.

II. CACHE MANAGEMENT FOR APACHE SPARK

In this section, problems of data cache management of
Spark are described.

A. RDD

Spark uses RDD as a data format to process data in
the memory for iterative processing workloads. RDD is a
collection of data distributed to multiple nodes. Input data
are converted into RDDs while the RDDs in turn are parti-
tioned into multiple data blocks (partitions). Programmers
can easily implement distributed processing by the use of
RDD because RDD operations are automatically converted to
operations to each partition.

B. Details of the caching mechanism

Spark caches input and intermediate RDDs to reuse them
in the following execution steps to prevent the regeneration
of RDDs. Spark supports three types of cache stores, MEM-
ORY ONLY, DISK ONLY, and MEMORY AND DISK.
Caching partitions are always written into the storage-memory,
and cached partitions are discarded (MEMORY ONLY) or
dropped to the disk (MEMORY AND DISK) based on LRU
when there is no free space in the storage-memory respec-
tively. In the MEMORY ONLY usage, heavily loaded regener-
ation of deleted partitions is needed when they are required. In
the DISK ONLY usage, caching partitions are always written
to the disk to prevent the regeneration of data. However, the
storage-memory is not utilized and disk accesses are increased.

The processing flow of the MEMORY AND DISK-based
caching is shown in Fig. 1. Caching partitions are always
written into the storage-memory. Already cached partitions
are dropped to the disk based on LRU if the storage-memory
has no space. Cached partitions are returned to the storage-
memory and copied to the execution-memory. In addition, the
returning partition results in dropping another one to the disk if
the storage-memory has no space. These implementations have
an advantage such that frequency used partitions are generally
allocated in the memory. However, write/read operations al-
ways drop partitions to the disk if the storage-memory is filled.
Spark can avoid such drops only if a single RDD is cached.
Specifically, caching partitions are directly written to the disk
instead of the memory and cached partitions are directly
returned to the execution-memory instead of the storage-
memory when the storage-memory is filled with partitions
in the same RDD. On the other hand, prior detection of the
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Fig. 1. MEMORY AND DISK write/read operations when the storage-
memory is filled with partitions of multiple RDDs

TABLE I
THE SPECIFICATION OF MASTER/SLAVE NODES AND SPARK

Evaluation environment
OS Ubuntu 14.04
CPU Core i5- 3476K (3.20 GHz), 4 cores
Size of memory 4.2 GB (size of storage-memory: 2.4 GB)
HDD 1 TB
Spark version 2.0.1
The Number of machines Master x1, Slave x1
File system HDFS [13] (version 2.7.3)

TABLE II
THE SPECIFICATION OF KMEANS

(USED HIBENCH [14])

Program Configuration
KMeans 20 million samples

20 dimensions of samples
k=10
5.0 GB size of cached data
(vertex data: 4.0 GB,
center distance: 1.0 GB)

TABLE III
THE SPECIFICATION OF NWEIGHT

Program Configuration
NWeight 5,000,000 edges

3 degrees
max 30 out edges
8.0 GB size of cached data
(vertexes and edges)

dependence among RDDs is difficult if multiple RDDs are
cached. Therefore, this raises a thrashing state involving fre-
quent partitions move between the memory and the disk. The
thrashing heavily degrades the performance because cached
partitions are dropped for write/read operations in iterative
processing workloads.

III. PRELIMINARY EVALUATION

A. Preliminary evaluation of the caching mechanism

Execution time has been measured with the three cache store
types to estimate the influence of the thrashing mentioned
in Section II. The evaluation environment and benchmark
details are shown in Tables I and II, respectively. Execution
time of KMeans is shown in Fig. 2. The execution time
of MEMORY ONLY usage was the longest because regen-
eration of deleted data became the performance bottleneck.
The execution time of DISK ONLY usage was the shortest
because regeneration of deleted data and conversion from
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Fig. 2. Evaluation results of execution time with three types of cache stores
(MEMORY ONLY, MEMORY AND DISK, DISK ONLY)
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data to RDD were not necessary. The execution time of
MEMORY AND DISK usage was longer than that of the
DISK ONLY usage. The number of drops of this situation
was measured to check whether thrashing state occurred. As a
result, drops occurred 36 times for write operations and 3,659
times for read operations. Therefore, the thrashing is the cause
of the performance degradation.

B. Research of optimal cache I/O behavior with modified
write/read operations

The MEMORY AND DISK usage caches data to the
storage-memory for write/read operations of Spark. We mod-
ified the cache I/O behavior associated with write/read opera-
tions to evaluate its performance effect. Details of the changes
are shown in Fig. 3. In write operations, caching partitions
are directly written to the disk when the storage-memory is
filled (Modified write operations). Partitions are written to
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behaviors
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Fig. 5. KMeans transition of the number of drops

the memory as usual when the storage-memory has enough
free space. In read operations, cached partitions are directly
returned to the execution-memory when the storage-memory
filled with other partitions (Modified read operations).
Partitions are returned to the storage-memory as usual when
the storage-memory has enough free space. These changes
eliminate the thrashing state even when multiple RDDs are
cached.

C. Preliminary evaluation of the cache I/O behavior

NWeight is a graph processing algorithm that involves
iterative cached data processing as shown in the configuration
in Table III. Execution time of two workloads, KMeans and
NWeight, was measured with varying the cache I/O behavior
to evaluate its effect. The following five cache I/O behaviors
were used in the experiments.

1) Default (DISK ONLY)
2) Default (MEMORY AND DISK)
3) Modified write operations
4) Modified read operations
5) Modified write/read operations
1) KMeans: Execution time of KMeans is shown in Fig.

4. Graphs represent execution time while changing the cache
I/O behavior and the storage-memory size from 0.6 GB to 8.4
GB. The execution time of method (1) was constant because
data were always cached in the disk. The execution times of
methods (2), (3), (4) and (5) were reduced as the storage-
memory size was increased from 0.6 GB to 7.8 GB due to the
fact that the number of drops decreased as increasing memory-
cached data and all cached data were written to the memory
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when the storage-memory size was larger than 5.4 GB. The
execution time of memory usage was increased when the
storage-memory size was 8.4 GB because memory thrashing
occurred between physical and virtual memory. The execution
times of methods (4) and (5) were reduced compared with
the method (2) when the storage-memory size was less than
4.2 GB. In particular, the method (4) is the most effective
(decreased by 33% on average).

Furthermore, the transition of the number of drops was
measured to unveil why the modified read operations is the
most effective method. The respective evaluation result are
shown in Fig. 5. The moderate increase of the number of
drops can be observed for write operations at the start up
time (∼ 500 s). In contrast, the number of drops for read
operations increased until the end of execution. From the
dataflow of KMeans, as shown in Fig. 6, the primary cause of
the drops is reading input RDD. According to these results,
the cause of thrashing is a large amount of drops for read
operations. Therefore, thrashing can be avoided by modifying
read operations from the start of execution.
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2) NWeight: Execution time of NWeight is shown in Fig.
7. Graphs represent execution time while changing the cache
I/O behavior and the storage-memory size from 4.8 GB to 8.4
GB. Method (1) has a degraded performance due to increase in
disk accesses. The execution time of method (5) was reduced
compared with methods (1) and (2). Unlike in the case of
KMeans, the method (5) is the most effective (decreased by
12% on average).

The transition of the number of drops is shown in Fig.
8. The number of drops for write operations increased more
than 100 times after 100 seconds from the start of execution.
The number of drops for write/read operations increased after
that. From the dataflow of NWeight as shown in Fig. 6, the
primary cause of the drops is reading input RDD and writing
intermediate RDD. According to these results, the cause of
thrashing is the number of drops for write operations (from
start to 100 seconds) and the number of drops for write/read
operations (from 100 seconds to end). Therefore, thrashing
can be avoided by modifying write operations (from start to
100 seconds) and write/read operations (from 100 seconds to
end).

IV. PROPOSED METHOD

In this section, we propose an adaptive control cache
mechanism based on workload characteristics. This method
can avoid thrashing state for workloads involving multiple
RDDs.

The optimal cache I/O behavior differs depending on work-
load characteristics such as modified read operations are the
most effective for KMeans and modified write/read operations
are the most effective for NWeight. Fixed optimal cache I/O
behavior is difficult because access pattern of the workload
have to be known before execution. Therefore, we propose
an adaptive control of cache I/O behavior based on workload
characteristics by measuring the access pattern of the workload
at runtime.

The number of drops is introduced as an indicator of
modifying the cache I/O behavior. The number of drops of
KMeans and NWeight are shown in Table IV. From these
results, the tendency of the ratio of drops for write operations
to drops for read operations was different immediately after
the start of execution and the whole execution for NWeight.
Therefore, the cache I/O behavior is modified at first when
the number of drops becomes 100 times. The ratio of drops
for write operations to drops for read operations was 7%



TABLE IV
THE NUMBER OF DROPS OF EACH WORKLOAD (FROM START OF

EXECUTION TO 100 TIMES OF THE NUMBER OF DROPS AND WHOLE
EXECUTION)

Program No. of drops No. of drops
(write) (read)

KMeans (from start of execution
to 100 times of the number of drops) 7 93
KMeans
(whole execution) 40 3,659
NWeight (from start of execution
to 100 times of the number of drops) 100 0
NWeight
(whole execution) 171 96

(from start of execution to 100 times of the number of drops)
and 1% (whole execution) for KMeans. It was 100% (from
start of execution to 100 times of the number of drops)
and 64% (whole execution) for NWeight. According to these
observations, the ratio of modifying the cache I/O behavior is
determined according to the content of Table V. The cache
I/O behavior is not modified when the number of drops is less
than 100 times.

TABLE V
RATIO OF MODIFYING THE CACHE I/O BEHAVIOR

Ratio of write Modified Modified
operation drops write operations read operations
80% ∼ ✓ -
30% ∼ 80% ✓ ✓
∼ 30% - ✓

V. EVALUATION

In this section, the proposed method is evaluated by measur-
ing the number of drops and execution time of four workloads
(KMeans, NWeight, Bayes and MovieLensALS). The evalua-
tion environment is shown in Table I while benchmark details
are shown in Tables II, III and VI.

TABLE VI
THE SPECIFICATION OF BAYES AND MOVIELENSALS

Program Configuration
Bayes 100 classes

6.0 GB size of cached data
MovieLensALS 5.0 GB size of cached data

The transition of the number of drops used by the proposed
method for KMeans and NWeight are shown in Fig. 9.
For KMeans, the number of drops of the default method
moderately increased for write operations immediately after
the start up time, and the number of drops increased until
the end of execution for read operations. Modification of
cache reading behaviors by the proposed method occurred
by dropping 97 times for read operations out of 100 times
of drops and prevented drops from happening after that. For
NWeight, the number of drops of the default method increased
for write operations more than 100 times after 100 seconds
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from the start of execution, and the number increased after
that for write/read operations. Modification of cache writing
behaviors by the proposed method occurred by dropping 100
times for write operations. Subsequently, modification of cache
writing/reading behaviors by the proposed method occurred
by dropping 27 times for read operations and prevented drops
from happening after that.

Execution times of default MEMORY AND DISK and
the proposed method are shown in Fig. 10. The execution
time of proposed method was reduced by 33% for KMeans
compared with the default method by the effect of modified
read operations. The execution time was reduced by 31%
for NWeight by the effect of modified write/read operations.
The execution time was reduced by 28% for Bayes and 9%
for MovieLensALS by the effect of modified read operations
because the number of drops related to read operations arose in
these two benchmarks. For these results, the proposed method
improves performance by changing the adaptive cache I/O
behavior depending on workload characteristics.



VI. RELATED WORK

Koliopoulos et al. [15] and Xu et al. [16] proposed au-
tomatic mechanisms of deciding cache store types. In [15],
the authors designed this mechanism based on a ratio of the
storage-memory size to the disk size. However, this method
cannot use the memory when the ratio is too low although
data can be cached in the memory. Neutrino [16] determined
caching partitions and optimal cache store types based on RDD
access order. This method needs preliminary analysis on the
workload to extract RDD access order, while our method does
not need it.

Ho et al. [17] proposed PRDD that can efficiently update
cached data. Spark returns whole RDD to the storage-memory
even when a part of data of RDD is updated. PRDD returns
the individual partition of RDD to the storage-memory and
updates it to prevent from drops for read operations. This
method is effective if many update operations to a part of
RDD are executed. On the other hand, our method is effective
if many write/read operations to whole RDD are executed.

Jiang et al. [18] mathematically derived a criteria for
selecting optimal cached data compression to save memory
space and reduce the disk I/O time. Our method can be more
effective by incorporating this method because optimal cached
data compression can increase the number of memory-cached
data and decrease the number of drops. Further, Kryo serializer
[19] can save memory space by converting cached data to a
serialized form as Spark stores partitions as large byte arrays.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a thrashing avoidance method
that adaptively modifies the cache I/O behavior of Spark
depending on workload characteristics for workloads involving
multiple RDDs. The number of drops is introduced as an
indicator which is exploited based on a respective decision
table to dynamically modify the cache I/O behavior at runtime
according to the ratio of the number of write to read drops.
From the respective evaluation results, the proposed method
with modified read operations reduced execution time by 33%
for KMeans, 28% for Bayes and 9% for MovieLensALS.
Further, the method with modified write/read operations re-
duced execution time by 31% for NWeight. According to
these results, the proposed method is effective for workloads
involving multiple RDDs.

First timing of modifying the cache I/O behavior and the
ratio of modifying the cache I/O behavior are determined
heuristically at present time. In future, these values are
changed to optimal by investigating further benchmarks and
considering other information such as the reference count to
make our method adaptable to various workloads. Further, the
proposed method is needed to validate in terms of incorporat-
ing other drop-preventing methods such as serialization and
compression.
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